The Objective
Say we have a dataset of multi-tagged items: books with multiple genres, articles with multiple topics, products with multiple categories… We want to organise logically these tags -the genres, the topics, the categories…- in a descriptive but also actionable way. A typical organisation will be hierarchical, like a taxonomy.
But rather than building it manually, we are going to learn it from the data in an automated way. This means that the quality of the results will totally depend on the quality and distribution of the tagging in your data, so sometimes we’ll produce a rich taxonomy but sometimes the data will only yield a set of rules describing how tags relate to each other.
Finally, we’ll want to show how this taxonomy can be used and I’ll do it with an example on content recommendation / enhanced search. Continue reading “QuickGraph#5 Learning a taxonomy from your tagged data” →